Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Data Intelligence ; 4(4):673-697, 2022.
Article in English | Scopus | ID: covidwho-2194422

ABSTRACT

The incompleteness of patient health data is a threat to the management of COVID-19 in Africa and globally. This has become particularly clear with the recent emergence of new variants of concern. The Virus Outbreak Data Network (VODAN)-Africa has studied the curation of patient health data in selected African countries and identified that health information flows often do not involve the use of health data at the point of care, which renders data production largely meaningless to those producing it. This modus operandi leads to disfranchisement over the control of health data, which is extracted to be processed elsewhere. In response to this problem, VODAN-Africa studied whether or not a design that makes local ownership and repositing of data central to the data curation process, would have a greater chance of being adopted. The design team based their work on the legal requirements of the European Union's General Data Protection Regulation (GDPR);the FAIR Guidelines on curating data as Findable, Accessible (under well-defined conditions), Interoperable and Reusable (FAIR);and national regulations applying in the context where the data is produced. The study concluded that the visiting of data curated as machine actionable and reposited in the locale where the data is produced and renders services has great potential for access to a wider variety of data. A condition of such innovation is that the innovation team is intradisciplinary, involving stakeholders and experts from all of the places where the innovation is designed, and employs a methodology of co-creation and capacity-building. © 2022 Chinese Academy of Sciences. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

2.
Data Intelligence ; 4, 2022.
Article in English | Scopus | ID: covidwho-2053490

ABSTRACT

Research and development are gradually becoming data-driven and the implementation of the FAIR Guidelines (that data should be Findable, Accessible, Interoperable, and Reusable) for scientific data administration and stewardship has the potential to remarkably enhance the framework for the reuse of research data. In this way, FAIR is aiding digital transformation. The ‘FAIRification’ of data increases the interoperability and (re)usability of data, so that new and robust analytical tools, such as machine learning (ML) models, can access the data to deduce meaningful insights, extract actionable information, and identify hidden patterns. This article aims to build a FAIR ML model pipeline using the generic FAIRification workflow to make the whole ML analytics process FAIR. Accordingly, FAIR input data was modelled using a FAIR ML model. The output data from the FAIR ML model was also made FAIR. For this, a hybrid hierarchical k-means (HHK) clustering ML algorithm was applied to group the data into homogeneous subgroups and ascertain the underlying structure of the data using a Nigerian-based FAIR dataset that contains data on economic factors, healthcare facilities, and coronavirus occurrences in all the 36 states of Nigeria. The model showed that research data and the ML pipeline can be FAIRified, shared, and reused by following the proposed FAIRification workflow and implementing technical architecture. © 2022 Chinese Academy of Sciences. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

SELECTION OF CITATIONS
SEARCH DETAIL